ÌâÄ¿ÄÚÈÝ
17£®ÎªÁ˽âij°àѧÉúϲ°®´òÀºÇòÊÇ·ñÓëÐÔ±ðÓйأ¬¶Ô±¾°à50È˽øÐÐÁËÎʾíµ÷²éµÃµ½ÁËÈçϵÄÁÐÁª±í£ºÏ²°®´òÀºÇò | ²»Ï²°®´òÀºÇò | ºÏ¼Æ | |
ÄÐÉú | 5 | ||
Å®Éú | 10 | ||
ºÏ¼Æ | 50 |
£¨1£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£»
£¨2£©ÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ°®´òÀºÇòÓëÐÔ±ðÓйأ¿ËµÃ÷ÄãµÄÀíÓÉ£º
£¨3£©¼ºÖªÏ²°®´òÀºÇòµÄ10λŮÉúÖУ¬A1£¬A2£¬A3»¹Ï²»¶´òƹÅÒÇò£¬B1£¬B2£¬B3»¹Ï²»¶´òÓðëÇò£¬C1£¬C2»¹Ï²»¶Ìß×ãÇò£¬ÏÖÔÚ´Óϲ»¶´òƹÅÒÇò¡¢Ï²»¶´òÓðëÇò¡¢Ï²»¶Ìß×ãÇòµÄ8λŮÉúÖи÷Ñ¡³ö1Ãû½øÐÐÆäËû·½ÃæµÄµ÷²é£¬ÇóB1ºÍC1²»È«±»Ñ¡ÖеĸÅÂÊ£®£¨ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£©
p£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨1£©¸ù¾ÝÊý¾Ý¼´¿É½«ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£»
£¨2£©Çó³öK2£¬½áºÏÁÙ½çÖµ±í½øÐÐÅжϼ´¿É£®
£¨3£©ÀûÓÃÁоٷ¨½øÐÐÇó½â¼´¿ÉµÃµ½½áÂÛ£®
½â´ð ½â£º£¨1£©±í¸ñÌî¿ÕÈçÏ£º
ϲ°®´òÀºÇò | ²»Ï²°®´òÀºÇò | ºÏ¼Æ | |
ÄÐÉú | 20 | 5 | 25 |
Å®Éú | 10 | 15 | 25 |
ºÏ¼Æ | 30 | 20 | 50 |
£¨2£©¡ß${K^2}=\frac{{50¡Á{{£¨20¡Á15-10¡Á5£©}^2}}}{30¡Á20¡Á25¡Á25}¡Ö8.333£¾7.879$£®¡£¨4·Ö£©
¡àÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ°®´òÀºÇòÓëÐÔ±ðÓйأ®¡£¨6·Ö£©
£¨3£©´Óϲ»¶´òƹÅÒÇò¡¢Ï²»¶´òÓðëÇò¡¢Ï²»¶Ìß×ãÇòµÄ8λŮÉúÖи÷Ñ¡1Ãû£¬ÆäÒ»ÇпÉÄܵĽá¹û×é³ÉµÄ»ù±¾Ê¼þÈçÏ£º$\begin{array}{l}£¨{A_1}£¬{B_1}£¬{C_1}£©£¬£¨{A_1}£¬{B_1}£¬{C_2}£©£¬£¨{A_1}£¬{B_2}£¬{C_1}£©£¬£¨{A_1}£¬{B_2}£¬{C_2}£©£¬£¨{A_1}£¬{B_3}£¬{C_1}£©£¬£¨{A_1}£¬{B_3}£¬{C_2}£©£¬\\£¨{A_2}£¬{B_1}£¬{C_1}£©£¬£¨{A_2}£¬{B_1}£¬{C_2}£©£¬£¨{A_2}£¬{B_2}£¬{C_1}£©£¬£¨{A_2}£¬{B_2}£¬{C_2}£©£¬£¨{A_2}£¬{B_3}£¬{C_1}£©£¬£¨{A_2}£¬{B_3}£¬{C_2}£©£¬\\£¨{A_3}£¬{B_1}£¬{C_1}£©£¬£¨{A_3}£¬{B_1}£¬{C_2}£©£¬£¨{A_3}£¬{B_2}£¬{C_1}£©£¬£¨{A_3}£¬{B_2}£¬{C_2}£©£¬£¨{A_3}£¬{B_3}£¬{C_1}£©£¬£¨{A_3}£¬{B_3}£¬{C_2}£©£¬\end{array}$¡£¨8·Ö£©
»ù±¾Ê¼þµÄ×ÜÊýΪ18£¬ÓÃM±íʾ¡°B1£¬C1²»È«±»Ñ¡ÖС±Õâһʼþ£¬
ÔòÆä¶ÔÁ¢Ê¼þ$\overline M$±íʾ¡°B1£¬C1È«±»Ñ¡ÖС±Õâһʼþ£¬
ÓÉÓÚ$\overline M$ÓÉ£¨A1£¬B1£¬C1£©£¬£¨A2£¬B1£¬C1£©£¬£¨A3£¬B1£¬C1£©£¬3¸ö»ù±¾Ê¼þ×é³É£¬¡£¨10·Ö£©
ËùÒÔ$P£¨\overline M£©=\frac{3}{18}=\frac{1}{6}$£®¡£¨11·Ö£©
ÓɶÔÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½µÃ$P£¨\overline M£©=1-P£¨M£©=1-\frac{1}{6}=\frac{5}{6}$£®¡£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÒÔ¼°¹Åµä¸ÅÐ͵ĸÅÂʵļÆË㣬ÀûÓÃÁоٷ¨Êǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®ÒÑ֪żº¯Êýf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇÒf£¨a+1£©£¾f£¨a-1£©£¬ÔòʾÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | £¨0£¬+¡Þ£© | B£® | [0£¬+¡Þ£© | C£® | £¨-¡Þ£¬0£© | D£® | £¨-1£¬+¡Þ£© |
8£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{2¦Ð}{3}$£¬|$\overrightarrow{b}$|=1£¬ÇÒ¶ÔÈÎÒâʵÊýx£¬²»µÈʽ|$\overrightarrow{a}$+x$\overrightarrow{b}$|¡Ý|$\overrightarrow{a}$+$\overrightarrow{b}$|ºã³ÉÁ¢£¬Ôò|$\overrightarrow{a}$|=£¨¡¡¡¡£©
A£® | $\sqrt{2}$ | B£® | 1 | C£® | 2 | D£® | $\sqrt{3}$ |
9£®µãCÔÚÏ߶ÎABÉÏ£¬ÇÒ|$\overrightarrow{AC}$|=$\frac{5}{2}$|$\overrightarrow{CB}$|£¬Ôò$\overrightarrow{BC}$=k$\overrightarrow{AB}$£¬ÔòkµÄÖµÊÇ£¨¡¡¡¡£©
A£® | $\frac{5}{7}$ | B£® | -$\frac{5}{7}$ | C£® | -$\frac{2}{7}$ | D£® | $\frac{2}{7}$ |
6£®ÒÑÖªº¯Êýf£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬Âú×ãxf¡ä£¨x£©+2f£¨x£©=$\frac{lnx}{x}$£¬ÇÒf£¨e£©=$\frac{1}{2e}$£¬Ôòf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷ÐÔΪ£¨¡¡¡¡£©
A£® | ÏÈÔöºó¼õ | B£® | µ¥µ÷µÝÔö | C£® | µ¥µ÷µÝ¼õ | D£® | ÏȼõºóÔö |