ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖªÖ±ÏßL£º$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$ÓëÇúÏßC£º$\left\{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}\right.$ÏཻÓÚA£¬BÁ½µã£¬µãFµÄ×ø±êΪ£¨1£¬0£©£®£¨1£©Çó¡÷ABFµÄÖܳ¤£»
£¨2£©ÈôµãE£¨-1£¬0£©Ç¡ÎªÏ߶ÎABµÄÈýµÈ·Öµã£¬ÇóÈý½ÇÐÎABFµÄÃæ»ý£®
·ÖÎö £¨1£©ÔËÓÃͬ½ÇµÄƽ·½¹ØϵºÍ´úÈë·¨£¬»¯²ÎÊý·½³ÌΪÆÕͨ·½³Ì£¬ÔÙÓÉÍÖÔ²µÄ¶¨Ò壬¼´¿ÉµÃµ½ËùÇóÈý½ÇÐÎABFµÄÖܳ¤£»
£¨2£©ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÏûÈ¥x£¬ÔËÓÃΤ´ï¶¨ÀíºÍÈýµÈ·Öµã£¬ÇóµÃ|y1-y2|£¬½ø¶øÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½£®
½â´ð ½â£º£¨1£©ÇúÏßC£º$\left\{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}\right.$»¯ÎªÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£¬
Ö±ÏßL£º$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$»¯ÎªÆÕͨ·½³ÌΪy=tan¦Á•£¨x+1£©£¬
Ö±Ïߺã¹ýÍÖÔ²µÄ×ó½¹µãF'£¨-1£¬0£©£¬
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ£¬¡÷ABFµÄÖܳ¤Îª|AF'|+|AF|+|BF'|+|BF|=4a=4$\sqrt{2}$£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥x£¬¿ÉµÃ£¬
£¨2+cot2¦Á£©y2-2cot¦Á•y-1=0£¬
Ôòy1+y2=$\frac{2cot¦Á}{2+co{t}^{2}¦Á}$£¬y1y2=-$\frac{1}{2+co{t}^{2}¦Á}$£¬¢Ù
µãE£¨-1£¬0£©Ç¡ÎªÏ߶ÎABµÄÈýµÈ·Öµã£¬¼´ÓÐ2y1=-y2£¬¢Ú
½âµÃcot¦Á=¡À$\frac{\sqrt{14}}{7}$£¬
Ôò¡÷ABFµÄÃæ»ýΪS=$\frac{1}{2}$|FF'|•|y1-y2|=|y1-y2|=$\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$
=$\sqrt{£¨\frac{¡À\frac{2\sqrt{14}}{7}}{2+\frac{2}{7}}£©^{2}+\frac{4}{2+\frac{2}{7}}}$=$\frac{3\sqrt{14}}{8}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬Í¬Ê±¿¼²éÍÖÔ²µÄ¶¨ÒåºÍÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
ϲ°®´òÀºÇò | ²»Ï²°®´òÀºÇò | ºÏ¼Æ | |
ÄÐÉú | 5 | ||
Å®Éú | 10 | ||
ºÏ¼Æ | 50 |
£¨1£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£»
£¨2£©ÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ°®´òÀºÇòÓëÐÔ±ðÓйأ¿ËµÃ÷ÄãµÄÀíÓÉ£º
£¨3£©¼ºÖªÏ²°®´òÀºÇòµÄ10λŮÉúÖУ¬A1£¬A2£¬A3»¹Ï²»¶´òƹÅÒÇò£¬B1£¬B2£¬B3»¹Ï²»¶´òÓðëÇò£¬C1£¬C2»¹Ï²»¶Ìß×ãÇò£¬ÏÖÔÚ´Óϲ»¶´òƹÅÒÇò¡¢Ï²»¶´òÓðëÇò¡¢Ï²»¶Ìß×ãÇòµÄ8λŮÉúÖи÷Ñ¡³ö1Ãû½øÐÐÆäËû·½ÃæµÄµ÷²é£¬ÇóB1ºÍC1²»È«±»Ñ¡ÖеĸÅÂÊ£®£¨ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£©
p£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A£® | n£¼2 | B£® | n£¼3 | C£® | n£¼4 | D£® | a£¼3 |