ÌâÄ¿ÄÚÈÝ

7£®ÒÑÖªÖ±ÏßL£º$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$ÓëÇúÏßC£º$\left\{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}\right.$ÏཻÓÚA£¬BÁ½µã£¬µãFµÄ×ø±êΪ£¨1£¬0£©£®
£¨1£©Çó¡÷ABFµÄÖܳ¤£»
£¨2£©ÈôµãE£¨-1£¬0£©Ç¡ÎªÏ߶ÎABµÄÈýµÈ·Öµã£¬ÇóÈý½ÇÐÎABFµÄÃæ»ý£®

·ÖÎö £¨1£©ÔËÓÃͬ½ÇµÄƽ·½¹ØϵºÍ´úÈë·¨£¬»¯²ÎÊý·½³ÌΪÆÕͨ·½³Ì£¬ÔÙÓÉÍÖÔ²µÄ¶¨Ò壬¼´¿ÉµÃµ½ËùÇóÈý½ÇÐÎABFµÄÖܳ¤£»
£¨2£©ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÏûÈ¥x£¬ÔËÓÃΤ´ï¶¨ÀíºÍÈýµÈ·Öµã£¬ÇóµÃ|y1-y2|£¬½ø¶øÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½£®

½â´ð ½â£º£¨1£©ÇúÏßC£º$\left\{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}\right.$»¯ÎªÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£¬
Ö±ÏßL£º$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$»¯ÎªÆÕͨ·½³ÌΪy=tan¦Á•£¨x+1£©£¬
Ö±Ïߺã¹ýÍÖÔ²µÄ×ó½¹µãF'£¨-1£¬0£©£¬
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ£¬¡÷ABFµÄÖܳ¤Îª|AF'|+|AF|+|BF'|+|BF|=4a=4$\sqrt{2}$£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥x£¬¿ÉµÃ£¬
£¨2+cot2¦Á£©y2-2cot¦Á•y-1=0£¬
Ôòy1+y2=$\frac{2cot¦Á}{2+co{t}^{2}¦Á}$£¬y1y2=-$\frac{1}{2+co{t}^{2}¦Á}$£¬¢Ù
µãE£¨-1£¬0£©Ç¡ÎªÏ߶ÎABµÄÈýµÈ·Öµã£¬¼´ÓÐ2y1=-y2£¬¢Ú
½âµÃcot¦Á=¡À$\frac{\sqrt{14}}{7}$£¬
Ôò¡÷ABFµÄÃæ»ýΪS=$\frac{1}{2}$|FF'|•|y1-y2|=|y1-y2|=$\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$
=$\sqrt{£¨\frac{¡À\frac{2\sqrt{14}}{7}}{2+\frac{2}{7}}£©^{2}+\frac{4}{2+\frac{2}{7}}}$=$\frac{3\sqrt{14}}{8}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬Í¬Ê±¿¼²éÍÖÔ²µÄ¶¨ÒåºÍÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø