题目内容

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{b}$|=1,且对任意实数x,不等式|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,则|$\overrightarrow{a}$|=(  )
A.$\sqrt{2}$B.1C.2D.$\sqrt{3}$

分析 把所给的不等式平方可得x2-|$\overrightarrow{a}$|x+|$\overrightarrow{a}$|-1≥0恒成立,再利用二次函数的性质可得△=${\overrightarrow{a}}^{2}$-4(|$\overrightarrow{a}$|-1)=${(|\overrightarrow{a}|-2)}^{2}$≤0,由此求得|$\overrightarrow{a}$|.

解答 解:由题意可得${\overrightarrow{a}}^{2}$+2x$\overrightarrow{a}$•$\overrightarrow{b}$+x2${\overrightarrow{b}}^{2}$≥${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow{b}$+${\overrightarrow{b}}^{2}$ 恒成立,
即x2+(2x-2)$\overrightarrow{a}$•$\overrightarrow{b}$-1≥0,即x2+(2x-2)|$\overrightarrow{a}$|•(-$\frac{1}{2}$)-1≥0 恒成立,
即x2-|$\overrightarrow{a}$|x+|$\overrightarrow{a}$|-1≥0恒成立,∴△=${\overrightarrow{a}}^{2}$-4(|$\overrightarrow{a}$|-1)=${(|\overrightarrow{a}|-2)}^{2}$≤0,
求得|$\overrightarrow{a}$|=2,
故选:C.

点评 本题主要考查两个向量的数量积的运算,函数的恒成立问题,二次函数的性质应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网