题目内容
【题目】已知为数列的前项和,,,若关于正整数的不等式的解集中的整数解有两个,则正实数的取值范围为( )
A. B. C. D.
【答案】A
【解析】分析:由2Sn=(n+1)an,n≥2时,2Sn﹣1=nan﹣1,则2an=2(Sn﹣Sn﹣1),整理得: ,则,可得:an=n.不等式an2﹣tan≤2t2,化为:(n﹣2t)(n+t)≤0,t>0,0<n≤2t,关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,即可得出正实数t的取值范围.
详解:∵a1=1,2Sn=(n+1)an,
∴n≥2时,2Sn﹣1=nan﹣1,
∴2an=2(Sn﹣Sn﹣1)=(n+1)an﹣nan﹣1,整理得:,
∴
∴an=n.
不等式an2﹣tan≤2t2,化为:(n﹣2t)(n+t)≤0,t>0,
∴0<n≤2t,
关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,
可知n=1,2.
∴1≤t<,
故答案为:A.
练习册系列答案
相关题目
【题目】中央电视台播出的《朗读者》节目,受到广大人民群众的喜爱.随着节目的播出,极大激发了观众对朗读以及经典的阅读学习积累的热情,从中获准匪浅,现从观看节目的观众中随机统计了4位观众的周均阅读学习经典的知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如下表所示):
年龄岁 | 20 | 30 | 40 | 50 |
周均学习成语知识时间(小时) | 2.5 | 3 | 4 | 4.5 |
由表中数据,试求线性回归方程,并预测年龄为50岁观众周均学习阅读经典知识的时间.
参考公式: