题目内容
【题目】在平面直角坐标中,圆与圆相交与两点.
(I)求线段的长.
(II)记圆与轴正半轴交于点,点在圆C上滑动,求面积最大时的直线的方程.
【答案】(I);(II)或.
【解析】
(I)先求得相交弦所在的直线方程,再求得圆的圆心到相交弦所在直线的距离,然后利用直线和圆相交所得弦长公式,计算出弦长.(II)先求得当时,取得最大值,根据两直线垂直时斜率的关系,求得直线的方程,联立直线的方程和圆的方程,求得点的坐标,由此求得直线的斜率,进而求得直线的方程.
(I)由圆O与圆C方程相减可知,相交弦PQ的方程为.
点(0,0)到直线PQ的距离,
(Ⅱ),.
当时,取得最大值.
此时,又则直线NC为.
由,或
当点时,,此时MN的方程为.
当点时,,此时MN的方程为.
∴MN的方程为或.
练习册系列答案
相关题目
【题目】某个产品有若干零部件构成,加工时需要经过7道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系,若加工工序必须要在工序完成后才能开工,则称为的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:
工序 | |||||||
加工时间 | 3 | 4 | 2 | 2 | 2 | 1 | 5 |
紧前工序 | 无 | 无 |
现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是( )
(假定每道工序只能安排在一台机器上,且不能间断.)
A. 11个小时 B. 10个小时 C. 9个小时 D. 8个小时