题目内容
【题目】年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,,,…,并整理得到如下频率分布直方图:
(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;
(Ⅱ)估计该区居民年龄的中位数(精确到);
(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)
【解析】
(I)计算之间的频率和,由此估计出年龄不小于的概率.(II)从左往右,计算出频率之和为的位置,由此估计中中位数.(III)用各组中点值乘以频率人后相加,求得居民平均年龄的估计值.
解:(Ⅰ)设从该区中随机抽取一人,估计其年龄不小于60为事件,
所以该区中随机抽取一人,估计其年龄不小于60的概率为.
(Ⅱ)年龄在的累计频率为,
,
所以估计中位数为.
(Ⅲ)平均年龄为
【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级名学生中进行了抽样调查,发现喜欢甜品的占.这名学生中南方学生共人。南方学生中有人不喜欢甜品.
(1)完成下列列联表:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | |||
北方学生 | |||
合计 |
(2)根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(3)已知在被调查的南方学生中有名数学系的学生,其中名不喜欢甜品;有名物理系的学生,其中名不喜欢甜品.现从这两个系的学生中,各随机抽取人,记抽出的人中不喜欢甜品的人数为,求的分布列和数学期望.
附:.
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【题目】随着支付宝、微信等支付方式的上线,越来越多的商业场景可以实现手机支付.有关部门为了了解各年龄段的人使用手机支付的情况,随机调查了50次商业行为,并把调查结果制成下表:
年龄(岁) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
手机支付 | 4 | 6 | 10 | 6 | 2 | 0 |
(1)若把年龄在的人称为中青年,年龄在的人称为中老年,请根据上表完成以下列联表;并判断是否可以在犯错误的概率不超过0.05的前提下,认为使用手机支付与年龄(中青年、中老年)有关系?
手机支付 | 未使用手机支付 | 总计 | |
中青年 | |||
中老年 | |||
总计 |
(2)若从年龄在的被调查中随机选取2人进行调查,记选中的2人中,使用手机支付的人数为,求的分布列及数学期望.
参考公式:,其中.
独立性检验临界值表:
0.15 | 0.10 | 0.005 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |