题目内容
【题目】过曲线C1: ﹣ =1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为( )
A.
B. ﹣1
C. +1
D.
【答案】D
【解析】解:设双曲线的右焦点为F2,则F2的坐标为(c,0)
因为曲线C1与C3有一个共同的焦点,所以y2=4cx
因为O为F1F2的中点,M为F1N的中点,所以OM为△NF1F2的中位线,
所以OM∥NF2,
因为|OM|=a,所以|NF2|=2a
又NF2⊥NF1,|FF2|=2c 所以|NF1|=2b
设N(x,y),则由抛物线的定义可得x+c=2a,
∴x=2a﹣c
过点F1作x轴的垂线,点N到该垂线的距离为2a
由勾股定理 y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2)
得e2﹣e﹣1=0,
∴e= .
故选:D
练习册系列答案
相关题目
【题目】某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:
日 期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均气温x(°C) | 9 | 10 | 12 | 11 | 8 |
销量y(杯) | 23 | 25 | 30 | 26 | 21 |
(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程 = x+ ;
(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.
(参考公式: = , = ﹣ )