题目内容
【题目】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段上是否存在一点M,使平面?说明理由.
【答案】(Ⅰ)见证明;(Ⅱ) (Ⅲ)见解析
【解析】
(Ⅰ)推导出AA1⊥CD,CD⊥AB,由此能证明CD⊥平面AA1B1B.
(Ⅱ)取A1B1中点F,连结DF,如图空间直角坐标系D﹣xyz,利用向量法能求出二面角B﹣AE﹣B1的余弦值.
(Ⅲ)假设线段B1C1上存在点M,使BM⊥平面AB1E.则λ∈[0,1],使得.求出平面AB1法向量,利用向量法能求出在线段B1C1上不存在点M,使BM⊥平面AB1E.
(Ⅰ)证明:在三棱柱中,
因为底面,CD平面ABC,
所以.
又为等边三角形,为的中点,
所以.因为,
所以平面;
(Ⅱ)取中点,连结,则
因为,分别为, 的中点,
所以.
由(Ⅰ)知,,
如图建立空间直角坐标系.
由题意得,,, ,,,,,
,.
设平面 法向量,
则即
令,则,.即.
平面BAE法向量.
因为,,,
所以
由题意知二面角为锐角,所以它的余弦值为.
(Ⅲ)解:在线段上不存在点M,使平面.理由如下.
假设线段上存在点M,使平面.则
,使得.
因为,所以.
又,所以.
由(Ⅱ)可知,平面法向量,
平面,当且仅当,
即,使得.
所以 解得.
这与矛盾.
所以在线段上不存在点M,使平面.
【题目】北京地铁八通线西起四惠站,东至土桥站,全长18.964km,共设13座车站.目前八通线执行2014年12月28日制订的计价标准,各站间计程票价(单位:元)如下:
四惠 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | |
四惠东 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ||
高碑店 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | p>5 | |||
传媒大学 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | ||||
双桥 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | |||||
管庄 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | ||||||
八里桥 | 3 | 3 | 3 | 3 | 4 | 4 | |||||||
通州北苑 | 3 | 3 | 3 | 3 | 3 | ||||||||
果园 | 3 | 3 | 3 | 3 | |||||||||
九棵树 | 3 | 3 | 3 | ||||||||||
梨园 | /p> | 3 | 3 | ||||||||||
临河里 | 3 | ||||||||||||
土桥 | |||||||||||||
四惠 | 四惠东 | 高碑店 | 传媒大学 | 双桥 | 管庄 | 八里桥 | 通州北苑 | 果园 | 九棵树 | 梨园 | 临河里 | 土桥 |
(Ⅰ)在13座车站中任选两个不同的车站,求两站间票价不足5元的概率;
(Ⅱ)甲乙二人从四惠站上车乘坐八通线,各自任选另一站下车(二人可同站下车),记甲乙二人乘车购票花费之和为X元,求X的分布列;
(Ⅲ)若甲乙二人只乘坐八通线,甲从四惠站上车,任选另一站下车,记票价为元;乙从土桥站上车,任选另一站下车,记票价为元.试比较和的方差和大小.(结论不需要证明)
【题目】2020年寒假是特殊的寒假,因为抗击疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为11:13,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.
(1)完成列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;
满意 | 不满意 | 总计 | |
男生 | 20 | ||
女生 | 15 | ||
合计 | 120 |
(2)从被调查的对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取3名学生,作线上学习的经验介绍,其中抽取男生的个数为,求出的分布列及期望值.
参考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |