题目内容
【题目】设椭圆的右顶点为A,下顶点为B,过A、O、B(O为坐标原点)三点的圆的圆心坐标为.
(1)求椭圆的方程;
(2)已知点M在x轴正半轴上,过点B作BM的垂线与椭圆交于另一点N,若∠BMN=60°,求点M的坐标.
【答案】(1)(2)
【解析】
(1)根据直径所对圆周角为直角可知为直径,根据圆心坐标求得的值进而求得椭圆的方程.(2)由(1)求得点的坐标,设出直线的方程,同时得到直线的方程.联立直线的方程和椭圆方程,解出点的坐标,由此求得的表达式.通过直线的方程求得点的坐标,进而求得的表达式,利用得到,由此列方程解得的值,从而求得点的坐标.
解:(1)依题意知,,
∵△AOB为直角三角形,∴过A、O、B三点的圆的圆心为斜边AB的中点,
∴,即,
∴椭圆的方程为.
(2)由(1)知,依题意知直线BN的斜率存在且小于0,
设直线BN的方程为,
则直线BM的方程为:,
由消去y得,
解得:,,
∴
∴ ,
在中,令得,即
∴,
在Rt△MBN中,∵∠BMN=60°,∴,
即,整理得,
解得,∵,∴,
∴点M的坐标为.
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量(单位:万只)与相应年份(序号)的数据表和散点图(如图所示),根据散点图,发现与有较强的线性相关关系,李四提供了该县山羊养殖场的个数(单位:个)关于的回归方程.
年份序号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年养殖山羊y/万只 | 1.2 | 1.5 | 1.6 | 1.6 | 1.8 | 2.5 | 25 | 2.6 | 2.7 |
根据表中的数据和所给统计量,求关于的线性回归方程(参考统计量:,);
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.
【题目】某公司培训员工某项技能,培训有如下两种方式:
方式一:周一到周五每天培训1小时,周日测试
方式二:周六一天培训4小时,周日测试
公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲组 | 20 | 25 | 10 | 5 |
乙组 | 8 | 16 | 20 | 16 |
用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?
在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.