题目内容
17.(1)利用关系式logaN=b?ab=N证明换底公式:logaN=$\frac{{log}_{m}N}{{log}_{m}a}$;
(2)利用(1)中的换底公式求下式的值:
log225•log34•log59
(3)利用(1)中的换底公式证明:
logab•logbc•logca=1.
分析 (1)设ab=N,则$lo{g}_{m}{a}^{b}$=logmN,化为blogma=logmN,又b=logaN,即可证明;
(2)利用换底公式可得:log225•log34•log59=$\frac{2lg5}{lg2}$$•\frac{2lg2}{lg3}$•$\frac{2lg3}{lg5}$,即可得出;
(3)利用换底公式可得:logab•logbc•logca=$\frac{lgb}{lga}•\frac{lgc}{lgb}•\frac{lga}{lgc}$,即可证明.
解答 (1)证明:设ab=N,则$lo{g}_{m}{a}^{b}$=logmN,化为blogma=logmN,又b=logaN,∴logaN=$\frac{{log}_{m}N}{{log}_{m}a}$;
(2)解:log225•log34•log59=$\frac{2lg5}{lg2}$$•\frac{2lg2}{lg3}$•$\frac{2lg3}{lg5}$=8;
(3)证明:logab•logbc•logca=$\frac{lgb}{lga}•\frac{lgc}{lgb}•\frac{lga}{lgc}$=1.
∴logab•logbc•logca=1.
点评 本题考查了对数的运算性质、换底公式及其应用,考查了计算能力,属于中档题.
练习册系列答案
相关题目
8.已知直线l1:x+y-2=0,直线l2过点(0,5),记l1,l2的夹角为θ,若sinθ=$\frac{2\sqrt{5}}{5}$,则l1,l2的交点坐标为( )
A. | (-$\frac{3}{4}$,$\frac{11}{4}$)或(-$\frac{9}{4}$,$\frac{17}{4}$) | B. | (-$\frac{3}{4}$,$\frac{11}{4}$)或($\frac{9}{4}$,-$\frac{1}{4}$) | ||
C. | ($\frac{3}{4}$,$\frac{5}{4}$)或(-$\frac{9}{4}$,$\frac{17}{4}$) | D. | ($\frac{3}{4}$,$\frac{5}{4}$)或($\frac{9}{4}$,-$\frac{1}{4}$) |
12.如果a2+b2=$\frac{1}{2}$c2,那么直线ax+by+c=0与圆x2+y2=1的位置关系是( )
A. | 相交 | B. | 相切 | C. | 相离 | D. | 相交或相切 |