题目内容

17.(1)利用关系式logaN=b?ab=N证明换底公式:
logaN=$\frac{{log}_{m}N}{{log}_{m}a}$;
(2)利用(1)中的换底公式求下式的值:
log225•log34•log59
(3)利用(1)中的换底公式证明:
logab•logbc•logca=1.

分析 (1)设ab=N,则$lo{g}_{m}{a}^{b}$=logmN,化为blogma=logmN,又b=logaN,即可证明;
(2)利用换底公式可得:log225•log34•log59=$\frac{2lg5}{lg2}$$•\frac{2lg2}{lg3}$•$\frac{2lg3}{lg5}$,即可得出;
(3)利用换底公式可得:logab•logbc•logca=$\frac{lgb}{lga}•\frac{lgc}{lgb}•\frac{lga}{lgc}$,即可证明.

解答 (1)证明:设ab=N,则$lo{g}_{m}{a}^{b}$=logmN,化为blogma=logmN,又b=logaN,∴logaN=$\frac{{log}_{m}N}{{log}_{m}a}$;
(2)解:log225•log34•log59=$\frac{2lg5}{lg2}$$•\frac{2lg2}{lg3}$•$\frac{2lg3}{lg5}$=8;
(3)证明:logab•logbc•logca=$\frac{lgb}{lga}•\frac{lgc}{lgb}•\frac{lga}{lgc}$=1.
∴logab•logbc•logca=1.

点评 本题考查了对数的运算性质、换底公式及其应用,考查了计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网