题目内容
【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且,
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.
【答案】(Ⅰ);(Ⅱ)。
【解析】试题分析:(Ⅰ)由题意P是圆上的动点,点D是P在x轴上的射影,M为PD上一点,且,利用相关点法即可求轨迹;(Ⅱ)由题意写出直线方程与曲线C的方程进行联立,利用根与系数的关系得到线段长度
试题解析:(Ⅰ)设M的坐标为(x,y)P的坐标为(xp,yp)
由已知 xp=x,
∵P在圆上, ∴,即C的方程为
(Ⅱ)过点(3,0)且斜率为的直线方程为,
设直线与C的交点为
将直线方程代入C的方程,得
即
∴∴线段AB的长度为
练习册系列答案
相关题目