题目内容
【题目】已知圆: 经过椭圆: 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆于, 两点,且().
(1)求椭圆的方程;
(2)当三角形的面积取得最大值时,求直线的方程.
【答案】(1);(2).
【解析】试题分析:(1)求椭圆标准方程,由圆与轴的交点,可求得,利用三点共线,由是圆的直径,从而,利用勾股定理可求得,从而由椭圆的定义可求得,于是得,椭圆方程即得;
(2)是确定的, ,说明,于是直线斜率已知,设出其方程为,代入椭圆方程,消去得的二次方程,从而有(分别是的横坐标),由直线与圆锥曲线相交的弦长公式可求得弦长,再由点到直线距离公式求出到直线的距离,可计算出的面积,最后利用基本不等式可求得面积的最大值,及此时的值,得直线方程.
解析:
(1)
如图,圆经过椭圆的左、右焦点,,所以,解得,因为, ,三点共线,所以为圆的直径, 所以,因为,所以.所以,由,得.所以椭圆的方程为.
(2)由(1)得,点的坐标为,因为,所以直线的斜率为,设直线的方程为,联立,得,设,由,得.因为
所以, 又点到直线的距离为,.当且仅当,即时,等号成立,所以直线的方程为或.
练习册系列答案
相关题目