题目内容
16.已知直线l与x轴、y轴的正半轴分别交于A(a,0),B(0,b)两点,且满足$\frac{2}{a}$+$\frac{1}{b}$=1,O为坐标原点,则△ABO面积的最小值为4.分析 由题意和基本不等式可得ab的最小值,而△ABO面积S=$\frac{1}{2}$ab,可得答案.
解答 解:由题意可得a和b为正数且$\frac{2}{a}$+$\frac{1}{b}$=1,
∴1=$\frac{2}{a}$+$\frac{1}{b}$≥2$\sqrt{\frac{2}{a}•\frac{1}{b}}$=$\frac{2\sqrt{2}}{\sqrt{ab}}$,
∴$\sqrt{ab}$≥2$\sqrt{2}$,∴ab≥8,
∴△ABO面积S=$\frac{1}{2}$ab≥4
当且仅当$\frac{2}{a}$=$\frac{1}{b}$即a=4且b=2时取等号,
∴△ABO面积的最小值为:4
故答案为:4
点评 本题考查基本不等式求最值,涉及直线的截距,属基础题.
练习册系列答案
相关题目
8.已知函数y=x2+3x+1(x>0)的图象在函数y=ax(x>0)图象的上方,则参数a的取值范围是( )
A. | (-∞,5) | B. | (-∞,3$\sqrt{3}$) | C. | (-∞,5] | D. | (-∞,3$\sqrt{3}$] |
8.函数f(x)=$\left\{\begin{array}{l}{1,x为有理数}\\{0,x为无理数}\end{array}\right.$则f(f($\sqrt{2}$))等于( )
A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | $1+\sqrt{2}$ |
3.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)
(1)估计该班同学中,参加排球兴趣小组的同学的比例;
(2)请根据数据画出列联表的等高条形图,并通过条形图判断参加“篮球小组”或“排球小组”与性别是否有关?
(3)请根据题中数据,判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关?
下面临界值表供参考:
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
篮球 | 排球 | 总计 | |
男同学 | 16 | 6 | 22 |
女同学 | 8 | 12 | 20 |
总计 | 24 | 18 | 42 |
(2)请根据数据画出列联表的等高条形图,并通过条形图判断参加“篮球小组”或“排球小组”与性别是否有关?
(3)请根据题中数据,判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关?
下面临界值表供参考:
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k2 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |