题目内容
5.已知曲线f(x)=$\frac{{{{log}_2}(x+1)}}{x+1}$(x>0)上有一点列Pn(xn,yn)(n∈N*),点Pn在x轴上的射影是Qn(xn,0),且xn=2xn-1+1(n∈N*),x1=1.(1)求数列{xn}的通项公式;
(2)设梯形PnQnQn+1Pn+1的面积是Sn,求证:$\frac{1}{S_1}$+$\frac{1}{{2{S_2}}}$+…+$\frac{1}{{n{S_n}}}$<4.
分析 1)由xn=2xn-1+1,从而有xn+1=2(xn-1+1),故可得{xn+1}是公比为2的等比数列,进而可求数列{xn}的通项公式;
(2)先将四边形PnQnQn+1Pn+1的面积表示为:Sn=$\frac{3n+1}{4}$,再表示 $\frac{1}{n{S}_{n}}$,进而利用放缩法可证.
解答 解:(1)由xn=2xn-1+1得xn+1=2(xn-1+1),
∵x1=1,
∴xn+1≠0,
故{xn+1}是公比为2的等比数列,∴xn=2n-1.(6分)
(2)∵yn=f(xn)=$\frac{{log}_{2}{2}^{n}-1+1)}{{2}^{n}-1+1}$=$\frac{n}{{2}^{n}}$,
∴QnQn+1=2n,而PnQn=$\frac{n}{{2}^{n}}$,(9分)
∴四边形PnQnQn+1Pn+1的面积为:Sn=$\frac{3n+1}{4}$,
∴$\frac{1}{n{S}_{n}}$=$\frac{4}{n(3n+1)}$=12($\frac{1}{3n}$-$\frac{1}{3n+1}$)<12($\frac{1}{3n}$-$\frac{1}{3n+3}$)=4($\frac{1}{n}$-$\frac{1}{n+1}$),
故$\frac{1}{S_1}$+$\frac{1}{{2{S_2}}}$+…+$\frac{1}{{n{S_n}}}$<4(1-$\frac{1}{n+1}$)<4.(14分)
点评 本题考查构造法证明等比数列,从而求数列的通项公式,考查放缩法证明不等式,属于中档题.
练习册系列答案
相关题目
20.若a=20.5,b=logπ3,c=log2sin$\frac{5π}{2}$,则( )
A. | b>c>a | B. | b>a>c | C. | a>b>c | D. | c>a>b |
13.某校举行运动会,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10 人和6人喜爱运动,其余不喜爱.
(Ⅰ)根据以上数据完成以下2×2列联表:
(Ⅱ)根据列联表的独立性检验,有多大的把握认为性别与喜爱运动有关?
(Ⅲ)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率.
参考公式:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(b+c)(a+c)(b+d)}$(其中n=a+b+c+d)
注:Χ2≤2.706,就认为没有充分证据显示“性别与喜爱运动有关”;Χ2>2.706,就有90%的把握认为“性别与喜爱运动有关”;Χ2>3.841,就有95%的把握认为“性别与喜爱运动有关”.
(Ⅰ)根据以上数据完成以下2×2列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男 | 10 | 16 | |
女 | 6 | 14 | |
总计 | 30 |
(Ⅲ)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率.
参考公式:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(b+c)(a+c)(b+d)}$(其中n=a+b+c+d)
注:Χ2≤2.706,就认为没有充分证据显示“性别与喜爱运动有关”;Χ2>2.706,就有90%的把握认为“性别与喜爱运动有关”;Χ2>3.841,就有95%的把握认为“性别与喜爱运动有关”.