题目内容
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,倾斜角为的直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为 .
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)已知点,若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.
【答案】(1),(2)
【解析】分析:(Ⅰ)将直线的参数方程中的参数消掉,得到直线的普通方程,将曲线的极坐标方程等号两边同乘以,再根据平面直角坐标与极坐标之间的转换关系,求得结果;
(Ⅱ)根据题意,得到相应点的坐标,代入,求得对应直线的斜率,两个方程联立,求得弦的中点,之后应用两点间距离公式求得结果.
详解:(Ⅰ)消去直线的参数方程中的参数,得到直线的普通方程为:,把曲线的极坐标方程 左右两边同时乘以,得到:,
利用公式代入,化简出曲线的直角坐标方程:;
(Ⅱ)点的直角坐标为,将点的直角坐标为代入直线中,得,即,联立方程组:,得中点坐标为,
从而.
练习册系列答案
相关题目