题目内容

(本小题满分12分)
已知数列{an}的前三项与数列{bn}的前三项对应相等,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1bn}是等差数列.
(1)求数列{an}与{bn}的通项公式;
(2)是否存在k∈N*,使得bkak∈(0,1)?请说明理由.
(1)an=24n(n∈N*),bnn2-7n+14(n∈N*).
(2)不存在k∈N*,使得bkak∈(0,1).理由略
解:(1)已知a1+2a2+22a3+…+2n-1an=8n(n∈N*).①
n≥2时,a1+2a2+22a3+…+2n-2an-1=8(n-1)(n∈N*).②
①-②得2n-1an=8,解得an=24n,在①中令n=1,可得a1=8=24-1
所以an=24n(n∈N*).(4分)
由题意b1=8,b2=4,b3=2,所以b2b1=-4,b3b2=-2,
∴数列{bn+1bn}的公差为-2-(-4)=2,
bn+1bn=-4+(n-1)×2=2n-6,
bnb1+(b2b1)+(b3b2)+…+(bnbn-1)
=8+(-4)+(-2)+…+(2n-8)=n2-7n+14(n∈N*).(8分)
(2)bkakk2-7k+14-24k,当k≥4时,f(k)=(k-)2+-24k单调递增,
f(4)=1,所以k≥4时,f(k)=k2-7k+14-24k≥1.
f(1)=f(2)=f(3)=0,所以,不存在k∈N*,使得bkak∈(0,1).(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网