题目内容
16.已知x+y=12,xy=32,且x>y,求$\frac{{x}^{\frac{1}{2}}-{y}^{\frac{1}{2}}}{{x}^{\frac{1}{2}}+{y}^{\frac{1}{2}}}$+$\frac{{x}^{\frac{4}{3}}-8{x}^{\frac{4}{3}}y}{{x}^{\frac{2}{3}}+2\root{3}{xy}+4{y}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{y}{x}}$).分析 由题意求出x、y的值,分别代入$\frac{{x}^{\frac{1}{2}}-{y}^{\frac{1}{2}}}{{x}^{\frac{1}{2}}+{y}^{\frac{1}{2}}}$和$\frac{{x}^{\frac{4}{3}}-8{x}^{\frac{4}{3}}y}{{x}^{\frac{2}{3}}+2\root{3}{xy}+4{y}^{\frac{2}{3}}}÷(1-2\root{3}{\frac{y}{x}})$,利用分数指数幂的运算法则化简求值即可.
解答 解:由题意得,$\left\{\begin{array}{l}{x+y=12}\\{xy=32}\\{x>y}\end{array}\right.$,解得x=8、y=4,
所以$\frac{{x}^{\frac{1}{2}}-{y}^{\frac{1}{2}}}{{x}^{\frac{1}{2}}+{y}^{\frac{1}{2}}}$=$\frac{{(x}^{\frac{1}{2}}-{y}^{\frac{1}{2}})^{2}}{x-y}$=$\frac{x-2\sqrt{xy}+y}{x-y}$=$3-2\sqrt{2}$,
$\frac{{x}^{\frac{4}{3}}-8{x}^{\frac{4}{3}}y}{{x}^{\frac{2}{3}}+2\root{3}{xy}+4{y}^{\frac{2}{3}}}÷(1-2\root{3}{\frac{y}{x}})$=$\frac{{2}^{4}-32•{2}^{4}}{{2}^{2}+2•\root{3}{32}+4\root{3}{16}}$÷(1-2•$\frac{1}{\root{3}{2}}$)
=$\frac{-31•{2}^{4}}{{2}^{2}+4\root{3}{4}+8\root{3}{2}}$×$\frac{1}{1-\root{3}{4}}$
=$\frac{-31•{2}^{4}}{{2}^{2}+4\root{3}{4}+8\root{3}{2}-(4\root{3}{4}+8\root{3}{2}+16)}$=$\frac{124}{3}$,
所以式子=$3-2\sqrt{2}$+$\frac{124}{3}$=$\frac{133}{3}-2\sqrt{2}$.
点评 本题考查分数指数幂的运算法则,以及化简、计算能力,属于中档题.
A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | 1 | D. | $\frac{1}{2}$ |
A. | 24$π-24\sqrt{3}$ | B. | 36$π-36\sqrt{3}$ | C. | 36$π-24\sqrt{3}$ | D. | 48$π-36\sqrt{3}$ |
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
A. | 216 | B. | 288 | C. | 312 | D. | 360 |
A. | (2,-1) | B. | (2,1) | C. | (1,-2) | D. | (1,2) |