题目内容

【题目】已知数列{an}的前n项和为Sn , a1=﹣ ,Sn+ =an﹣2(n≥2,n∈N)
(1)求S2 , S3 , S4的值;
(2)猜想Sn的表达式;并用数学归纳法加以证明.

【答案】
(1)

解: S1=a1=﹣ ,∵Sn+ =an﹣2(n≥2,n∈N),令n=2可得,

S2+ =a2﹣2=S2﹣a1﹣2,∴ = ﹣2,∴S2=﹣

同理可求得 S3=﹣ ,S4=﹣


(2)

解:猜想Sn=﹣ ,n∈N+,下边用数学归纳法证明:

①当n=2时,S2=a1+a2=﹣ ,猜想成立.

②假设当n=k时猜想成立,即SK=﹣

则当n=k+1时,∵Sn+ =an﹣2,∴

,∴ = ﹣2=

∴SK+1=﹣ ,∴当n=k+1时,猜想仍然成立.

综合①②可得,猜想对任意正整数都成立,即 Sn=﹣ ,n∈N+成立.


【解析】(1)S1=a1 , 由S2+ =a2﹣2=S2﹣a1 求得S2 , 同理求得 S3 , S4 . (2)猜想Sn=﹣ ,n∈N+ , 用数学归纳法进行证明.
【考点精析】掌握归纳推理是解答本题的根本,需要知道根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网