题目内容

【题目】设{an}是公比为正整数的等比数列,{bn}是等差数列,且a1a2a3=64,b1+b2+b3=﹣42,6a1+b1=2a3+b3=0.
(1)求数列{an}和{bn}的通项公式;
(2)设pn= ,数列{pn}的前n项和为Sn
①试求最小的正整数n0 , 使得当n≥n0时,都有S2n>0成立;
②是否存在正整数m,n(m<n),使得Sm=Sn成立?若存在,请求出所有满足条件的m,n;若不存在,请说明理由.

【答案】
(1)解:设等比数列{an}的公比为q>0,等差数列{bn}的公差为d,∵a1a2a3=64,b1+b2+b3=﹣42,6a1+b1=2a3+b3=0.

=64,3b2=﹣42, +b2﹣d=2a2q+b2+d=0,

联立解得a2=4,b2=﹣14,q=2,d=﹣2.

∴an= =4×2n2=2n,bn=b2+(n﹣2)d=﹣14﹣2(n﹣2)=﹣2n﹣10


(2)解:①∵pn=

数列{pn}的前2n项和S2n=(a1+a3+…+a2n1)+(b2+b4+…+b2n

= ﹣14n+ = ﹣2n2﹣12n.

n=1,2,3时,S2n<0.n≥4时,都有S2n>0.∴最小的正整数n0=4,使得当n≥n0时,都有S2n>0成立.

②由S1=2,S2=﹣12,S3=﹣12+23=﹣4,S4=﹣22,S5=﹣22+25=10,

S6=﹣12,S7=﹣12+27=116.

由①可知:使得当n≥4时,都有S2n>0成立,而an=2n>0.

因此n≥8时,都有Sn>0,且Sn单调递增.

假设存在正整数m,n(m<n),使得Sm=Sn成立,

则取m=2,n=6时,Sm=Sn=﹣12成立,

由n≥8时,都有Sn>0,且Sn单调递增,S8=90.因此Sm=Sn不可能成立.

综上可得:只有m=2,n=6时,使得Sm=Sn成立.


【解析】(1)利用等差数列与等比数列的通项公式即可得出.(2)①pn= ,可得数列{pn}的前2n项和S2n=(a1+a3+…+a2n1)+(b2+b4+…+b2n)= ﹣2n2﹣12n.n=1,2,3时,S2n<0.n≥4时,都有S2n>0.即可得出.②由S1=2,S2=﹣12,S3=﹣4,S4=﹣22,S5=10,S6=﹣12,S7=116.由①可知:使得当n≥4时,都有S2n>0成立,而an=2n>0.因此n≥8时,都有Sn>0,且Sn单调递增.即可得出.
【考点精析】解答此题的关键在于理解等比数列的前n项和公式的相关知识,掌握前项和公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网