题目内容
【题目】已知函数f(x)=x3﹣3ax﹣1,a≠0
(1)求f(x)的单调区间;
(2)若f(x)在x=﹣1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
【答案】
(1)解:f′(x)=3x2﹣3a=3(x2﹣a),
当a<0时,对x∈R,有f′(x)>0,
当a<0时,f(x)的单调增区间为(﹣∞,+∞)
当a>0时,由f′(x)>0解得 或 ;
由f′(x)<0解得 ,
当a>0时,f(x)的单调增区间为 ;
f(x)的单调减区间为
(2)解:因为f(x)在x=﹣1处取得极大值,
所以f′(﹣1)=3×(﹣1)2﹣3a=0,∴a=1.
所以f(x)=x3﹣3x﹣1,f′(x)=3x2﹣3,
由f′(x)=0解得x1=﹣1,x2=1.
由(1)中f(x)的单调性可知,f(x)在x=﹣1处取得极大值f(﹣1)=1,
在x=1处取得极小值f(1)=﹣3.
因为直线y=m与函数y=f(x)的图象有三个不同的交点,
结合f(x)的单调性可知,m的取值范围是(﹣3,1)
【解析】(1)先确求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间是增区间,fˊ(x)<0的区间是减区间.(2)先根据极值点求出a,然后利用导数研究函数的单调性,求出极值以及端点的函数值,观察可知m的范围.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的极值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.