题目内容
【题目】已知函数f(x)=ex﹣1+x﹣2(e为自然对数的底数).g(x)=x2﹣ax﹣a+3.若存在实数x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,则实数a的取值范围是
【答案】[2,3]
【解析】解:函数f(x)=ex﹣1+x﹣2的导数为f′(x)=ex﹣1+1>0,
f(x)在R上递增,由f(1)=0,可得f(x1)=0,解得x1=1,
存在实数x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,
即为g(x2)=0且|1﹣x2|≤1,
即x2﹣ax﹣a+3=0在0≤x≤2有解,
即有a= =(x+1)+ ﹣2在0≤x≤2有解,
令t=x+1(1≤t≤3),则t+ ﹣2在[1,2]递减,[2,3]递增,
可得最小值为2,最大值为3,
则a的取值范围是[2,3].
所以答案是:[2,3].
练习册系列答案
相关题目
【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:
价格x | 5 | 5.5 | 6.5 | 7 |
销售量y | 12 | 10 | 6 | 4 |
通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y= 中, , = ﹣ . =146.5.