题目内容
【题目】如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP= .
(1)求证:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.
【答案】
(1)证明:取AB的中点O,连接PO,CO,AC,
∵△APB为等腰三角形,∴PO⊥AB
又∵四边形ABCD是菱形,∠BCD=120°,
∴△ACB是等边三角形,∴CO⊥AB…
又CO∩PO=O,∴AB⊥平面PCO,
又PC平面PCO,∴AB⊥PC
(2)解:∵ABCD为菱形,∠BCD=120°,AB=PC=2,AP=BP= ,
∴PO=1,CO= ,∴OP2+OC2=PC2,
∴OP⊥OC,
以O为原点,OC为x轴,OB为y轴,OP为z轴,
建立空间直角坐标系,
则A(0,﹣1,0),B(0,1,0),C( ,0,0),
P(0,0,1),D( ,﹣2,0),
=( ,﹣1,0), =( ), =(0,2,0),
设平面DCP的法向量 =(x,y,z),
则 ,令x=1,得 =(1,0, ),
设平面PCB的法向量 =(a,b,c),
,令a=1,得 =(1, ),
cos< >= = ,
∵二面角B一PC﹣D为钝角,∴二面角B一PC﹣D的余弦值为﹣ .
【解析】(1)取AB的中点O,连接PO,CO,AC,由已知条件推导出PO⊥AB,CO⊥AB,从而AB⊥平面PCO,由此能证明AB⊥PC.(2)由已知得OP⊥OC,以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出二面角B一PC﹣D的余弦值.
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据3至5月份的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:.