题目内容
【题目】如图,多面体中,面面,面面,面,,,.
(1)求的大小;
(2)若,求二面角的余弦值.
【答案】(1) ;(2)
【解析】
(1)取中点,连接,再证明矩形,进而得到,从而得到为等腰直角三角形即可.
(2) 作于,作于.连接,即可证明为二面角的平面角,再分别计算三边的长度,利用余弦定理求解即可.
(1) 取中点,连接.
因为,故.又面面,且交于.面,故面.同理面.故.故共面.
又面,面面于.故.
故四边形为平行四边形.故 .
又,.,故为等腰直角三角形.
故
(2)作于,作于.连接.
因为分别为中点,故,又,故.
故.又,故面.
故为二面角的平面角.
又由(1),,故.又,故.
故.
在中,利用等面积法有,解得.
故..故 .
故.
即二面角的余弦值为.
【题目】千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,观察了所在地区A的100天日落和夜晚天气,得到如下列联表:
夜晚天气 日落云里走 | 下雨 | 未下雨 |
出现 | 25 | 5 |
未出现 | 25 | 45 |
临界值表 | ||||
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
并计算得到,下列小波对地区A天气判断不正确的是( )
A.夜晚下雨的概率约为
B.未出现“日落云里走”夜晚下雨的概率约为
C.有的把握认为“‘日落云里走’是否出现”与“当晚是否下雨”有关
D.出现“日落云里走”,有的把握认为夜晚会下雨
【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
贫困发生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;
(2)设年份代码,利用线性回归方程,分析年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
(的值保留到小数点后三位)
【题目】2019新型冠状病毒(2019―nCoV)于2020年1月12日被世界卫生组织命名.冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.某医院对病患及家属是否带口罩进行了调查,统计人数得到如下列联表:
戴口罩 | 未戴口罩 | 总计 | |
未感染 | 30 | 10 | 40 |
感染 | 4 | 6 | 10 |
总计 | 34 | 16 | 50 |
(1)根据上表,判断是否有95%的把握认为未感染与戴口罩有关;
(2)从上述感染者中随机抽取3人,记未戴口罩的人数为,求的分布列和数学期望.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |