题目内容
【题目】约公元前600年,几何学家泰勒斯第一个测出了金字塔的高度.如图,金字塔是正四棱锥,泰勒斯先测量出某个金字塔的底棱长约为230米;然后,他站立在沙地上,请人不断测量他的影子,当他的影子和身高相等时,他立刻测量出该金字塔影子的顶点A与相应底棱中点B的距离约为22.2米.此时,影子的顶点A和底面中心O的连线恰好与相应的底棱垂直,则该金字塔的高度约为( )
A.115米B.137.2米C.230米D.252.2米
【答案】B
【解析】
易知,当泰勒斯的身高与影子相等时,身高与影子构成等腰直角三角形的两直角边,再根据金字塔高与影子所在的直角三角形与刚才的三角形相似,可知塔底到A的距离即为塔高.
当泰勒斯的身高与影子相等时,身高与影子构成等腰直角三角形的两直角边,
再根据金字塔高与影子所在的直角三角形与刚才的三角形相似,可知塔底到A的距离即为塔高.
所以由题意得金字塔塔高为米.
故选:B.
【题目】新型冠状病毒肺炎COVID-19疫情发生以来,在世界各地逐渐蔓延.在全国人民的共同努力和各级部门的严格管控下,我国的疫情已经得到了很好的控制.然而,小王同学发现,每个国家在疫情发生的初期,由于认识不足和措施不到位,感染人数都会出现快速的增长.下表是小王同学记录的某国连续8天每日新型冠状病毒感染确诊的累计人数.
日期代码x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
累计确诊人数y | 4 | 8 | 16 | 31 | 51 | 71 | 97 | 122 |
为了分析该国累计感染人数的变化趋势,小王同学打算从①,②中选择一种模型对变量x和y的关系进行拟合,得到相应的回归方程,经过计算得,,,,其中,.
(1)请根据散点图,比较模型①,②的拟合效果,小王应该选择哪个模型?
(2)根据(1)问选定的模型求出相应的回归方程(系数均保留一位小数);
(3)由于时差,该国截止第9天新型冠状病毒感染确诊的累计人数尚未公布.小王同学认为,如果防疫形势没有得到明显改善,在数据公布之前可以根据他在(2)问求出的回归方程来对感染人数作出预测,那么估计该地区第9天新型冠状病毒感染确诊的累计人数是多少.
附:回归直线的最小二乘估计参考公式为:,