题目内容
已知函数
的定义域为
,且
的图象连续不间断. 若函数
满足:对于给定的
(
且
),存在
,使得
,则称
具有性质
.
(1)已知函数
,
,判断
是否具有性质
,并说明理由;
(2)已知函数
若
具有性质
,求
的最大值;
(3)若函数
的定义域为
,且
的图象连续不间断,又满足
,
求证:对任意
且
,函数
具有性质
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942782448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942798345.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942782448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942782448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942845339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942860457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942876481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942891642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942907787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942782448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942923507.png)
(1)已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942938719.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942954458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942782448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942985509.png)
(2)已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240339429851880.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942782448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942923507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942845339.png)
(3)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943047449.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942798345.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942782448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943094582.png)
求证:对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943110478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943125427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942782448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943157531.png)
(1)具有该性质,证明见解析;(2)
;(3)证明见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943172338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943188168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943188168.png)
试题分析:(1)创新定义问题,首先要读懂具有性质P(m)的意思, 对于给定的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942845339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942860457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942876481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942891642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033942907787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943281695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943297776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943328488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943344578.png)
具有性质P(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943172338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943172338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943172338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943406490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943422761.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943437834.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943453855.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943469994.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943484591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943500450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943547756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240339435621655.png)
试题解析:(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943281695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943593701.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943297776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943625933.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943328488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943344578.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943671466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943687504.png)
(2)m的最大值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943172338.png)
首先当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943718506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943734493.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943749804.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240339437651117.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943671466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943781524.png)
假设存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943796579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943671466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943827531.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943843662.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943859425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943874805.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943890857.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943905796.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943921702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943937781.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943952868.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943905796.png)
所以不存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943999676.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944015777.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944030337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943172338.png)
(3)任取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944061624.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944077866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944093683.png)
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943437834.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943453855.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944155897.png)
……
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944171962.png)
……
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944186936.png)
以上各式相加得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240339442021656.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944233951.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944233256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240339442641028.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240339442641043.png)
则函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943671466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944405526.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944233951.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944233256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944233256.png)
不妨设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944483869.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944498366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944514770.png)
由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944701466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944717367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944732756.png)
(当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944732378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944732756.png)
使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944779577.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240339447951040.png)
故函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033943671466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033944405526.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目