搜索
题目内容
若
,则满足不等式
的m的取值范围为
.
试题答案
相关练习册答案
m>-2
试题分析:因为
的定义域为R关于原点对称切满足
,所以函数
为奇函数,又因为
,所以函数f(x)在R上单调递增.则
m>-2,故填m>-2.
练习册系列答案
文曲星跟踪测试卷系列答案
优加密卷系列答案
教学质量检测卷系列答案
综合练习与检测系列答案
标准课堂作业系列答案
单元检测卷系列答案
新起点百分百课课练系列答案
课时训练一二三步系列答案
新课标小学教学资源试题库系列答案
随堂测试卷密卷系列答案
相关题目
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y
1
与投资金额x的函数关系为y
1
=18-
,B产品的利润y
2
与投资金额x的函数关系为y
2
=
(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
已知函数
的定义域为
,且
的图象连续不间断. 若函数
满足:对于给定的
(
且
),存在
,使得
,则称
具有性质
.
(1)已知函数
,
,判断
是否具有性质
,并说明理由;
(2)已知函数
若
具有性质
,求
的最大值;
(3)若函数
的定义域为
,且
的图象连续不间断,又满足
,
求证:对任意
且
,函数
具有性质
.
某公司欲建连成片的网球场数座,用288万元购买土地20000平方米,每座球场的建筑面积为1000平方米,球场每平方米的平均建筑费用与所建的球场数有关,当该球场建n座时,每平方米的平均建筑费用
表示,且
(其中
),又知建5座球场时,每平方米的平均建筑费用为400元.
(1)为了使该球场每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应建几座网球场?
(2)若球场每平方米的综合费用不超过820元,最多建几座网球场?
已知函数
.
(1)判断函数
在
的单调性并用定义证明;
(2)令
,求
在区间
的最大值的表达式
.
函数
,若数列
满足
,则
设函数
f
(
x
)在(0,+∞)内可导,且
f
(e
x
)=
x
+e
x
,则
f
′(1)=________.
关于x的方程
在
上有两个不同的实数根,则实数a的取值范围是___________.
在用二分法求方程
的一个近似解时,现在已经将一根锁定在(1,2)内,则下一步可断定该根所在的区间为( )
A.(1.4,2)
B.(1,1.4)
C.(1,1.5)
D.(1.5,2)
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总