题目内容
【题目】已知,,其中是自然对数的底数,.
(1)当时,证明:;
(2)是否存在实数,使的最小值为3,如果存在,求出的值;如果不存在,请说明理由.
【答案】(1)详见解析;(2)存在实数.
【解析】
(1)有题意不等式转化为恒成立,先求出f(x)的最小值,令h(x)=,x∈[﹣e,0),求导得出函数h(x)的最大值,从而得出结论;
(2)对求导,通过讨论a的范围,求出f(x)的最小值,即可求出a的值.
(1)由题意可知,所证不等式为,,
因为,
所以当时,,此时单调递减;
当时,,此时单调递增.
所以在上有唯一极小值,即在上的最小值为1;
令,,则,
当时,,故在上单调递减,
所以
所以当时,
(2)假设存在实数,使的最小值为3,
①若,由于,则,
所以函数在上是增函数,
所以,解得与矛盾,舍去.
②若,则当时,,此时是减函数,
当时,,此时是增函数,
所以,解得.
综上①②知,存在实数,使的最小值为3.
练习册系列答案
相关题目