题目内容
【题目】甲乙两俱乐部举行乒乓球团体对抗赛.双方约定:
①比赛采取五场三胜制(先赢三场的队伍获得胜利.比赛结束)
②双方各派出三名队员.前三场每位队员各比赛﹣场
已知甲俱乐部派出队员A1、A2 . A3 , 其中A3只参加第三场比赛.另外两名队员A1、A2比赛场次未定:乙俱乐部派出队员B1、B2 . B3 , 其中B1参加第一场与第五场比赛.B2参加第二场与第四场比赛.B3只参加第三场比赛
根据以往的比赛情况.甲俱乐部三名队员对阵乙俱乐部三名队员获胜的概率如表:
A1 | A2 | A3 | |
B1 | |||
B2 | |||
B3 |
(1)若甲俱乐部计划以3:0取胜.则应如何安排A1、A2两名队员的出场顺序.使得取胜的概率最大?
(2)若A1参加第一场与第四场比赛,A2参加第二场与第五场比赛,各队员每场比赛的结果互不影响,设本次团体对抗赛比赛的场数为随机变量X,求X的分布列及数学期望E(X)
【答案】
(1)解:设A1、A2两名队员分别参加第一场和第二场比赛,
甲俱乐部计划以3:0取胜的概率p1= .
设A1、A2两名队员分别参加第二场和第一场比赛,
甲俱乐部计划以3:0取胜的概率p2= = .
∵p1>p2,
∴甲俱乐部安排A1、A2两名队员分别参加第一场和第二场比赛,则三场即获胜的概率最大.
(2)解:由题意比赛场次X的可能取值为3,4,5,
P(X=3)= = ,
P(X=4)= + = ,
P(X=5)=1﹣P(X=3)﹣P(X=4)= ,
∴X的分布列为:
X | 3 | 4 | 5 |
P |
∴EX= =
【解析】(1)先求出A1、A2两名队员分别参加第一场和第二场比赛甲俱乐部计划以3:0取胜的概率,再求出A1、A2两名队员分别参加第二场和第一场比赛,甲俱乐部计划以3:0取胜的概率.由此能求出甲俱乐部安排A1、A2两名队员分别参加第一场和第二场比赛,则三场即获胜的概率最大.(2)由题意比赛场次X的可能取值为3,4,5,分别求出相应的概率,由此能求出X的分布列和EX.
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.