题目内容

7.已知各项都是正数的数列{an}满足:a1=1,$\frac{{1-a_{n+1}^2}}{1+a_n^2}=\frac{{{a_{n+1}}}}{a_n}$.
(Ⅰ)求a2,a3,a4的值,并猜想数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,${b_n}=\frac{1}{S_n^2}(n∈{N^*})$,若A=bn+1+bn+2+…+b2n,B=cosbn+1•cosbn+2•…cosb2n,求证:$\frac{A}{B}<\frac{ln4}{{\sqrt{3}}}$.

分析 (Ⅰ)通过对$\frac{{1-a_{n+1}^2}}{1+a_n^2}=\frac{{{a_{n+1}}}}{a_n}$变形可得数列$\left\{{\frac{1}{{{a_n}^2}}+{a_n}^2}\right\}$是以2为首项、4为公差的等差数列,计算即得结论;
(Ⅱ)先证ln(x+1)≤x,可得$\frac{1}{n}<ln\frac{n}{n-1}$,从而有A<ln2.再证当$x∈(0,\frac{π}{2})$时,sinx<x,从而有$B>\frac{{\sqrt{3}}}{2}$,即得结论.

解答 (Ⅰ)解:由${a_n}>0⇒1-{a_{n+1}}^2>0⇒0<{a_{n+1}}<1$,
∴a1=1,当n≥2时,0<an<1,
由题知$\frac{1}{{{a_{n+1}}}}-{a_{n+1}}={a_n}+\frac{1}{a_n}⇒(\frac{1}{{{a_{n+1}}^2}}+{a_{n+1}}^2)-(\frac{1}{{{a_n}^2}}+{a_n}^2)=4$,
而${a_1}^2+\frac{1}{{{a_1}^2}}=2$,
即数列$\left\{{\frac{1}{{{a_n}^2}}+{a_n}^2}\right\}$是以2为首项、4为公差的等差数列,
∴$\frac{1}{{{a_n}^2}}+{a_n}^2=4n-2$
即${a_n}=\sqrt{n}-\sqrt{n-1}$;
∴${a}_{2}=\sqrt{2}-1$,${a}_{3}=\sqrt{3}-\sqrt{2}$,${a}_{4}=2-\sqrt{3}$,${a}_{n}=\sqrt{n}-\sqrt{n-1}$.
(Ⅱ)证明:${S_n}={a_1}+{a_2}+…+{a_n}=(\sqrt{1}-\sqrt{0})+(\sqrt{2}-\sqrt{1})+…+(\sqrt{n}-\sqrt{n-1})=\sqrt{n}$
∴${b_n}=\frac{1}{n}$,$A=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$,$B=cos\frac{1}{n+1}cos\frac{1}{n+2}…cos\frac{1}{2n}$.
先证ln(x+1)≤x:
令f(x)=ln(x+1)-x,则$f'(x)=\frac{1}{x+1}-1=\frac{-x}{x+1}$,
∴f(x)在(-1,0)上单增,在(0,+∞)上单减,
故f(x)≤f(0)=0,即当x≠0时,ln(x+1)<x;
令$x=-\frac{1}{n}$(n>1),则有$ln(1-\frac{1}{n})<-\frac{1}{n}$,即$\frac{1}{n}<ln\frac{n}{n-1}$.
故有$A=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}<ln\frac{n+1}{n}+ln\frac{n+2}{n+1}+…+ln\frac{2n}{2n-1}=ln2$;
先证当$x∈(0,\frac{π}{2})$时,sinx<x:
令$g(x)=sinx-x(0<x<\frac{π}{2})⇒g'(x)=cosx-1<0$,
∴g(x)在$(0,\frac{π}{2})$上单减,故g(x)<g(0)=0,
即sinx<x在$(0,\frac{π}{2})$上成立;
令$x=\frac{1}{n}$(n∈N*),则${sin^2}\frac{1}{n}<\frac{1}{n^2}⇒{cos^2}\frac{1}{n}>1-\frac{1}{n^2}=\frac{(n-1)(n+1)}{n^2}$,
故${B^2}>\frac{n(n+2)}{{{{(n+1)}^2}}}•\frac{(n+1)(n+3)}{{{{(n+2)}^2}}}•…•\frac{(2n-1)(2n+1)}{{{{(2n)}^2}}}=\frac{2n+1}{2n+2}$≥$\frac{3}{4}$,∴$B>\frac{{\sqrt{3}}}{2}$;
综上,$\frac{A}{B}<\frac{ln2}{{\frac{{\sqrt{3}}}{2}}}=\frac{ln4}{{\sqrt{3}}}$.

点评 本题是一道数列与不等式的综合题,考查求数列的通项,对表达式的灵活变形是解决本题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网