题目内容
【题目】f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是( )
A.﹣2
B.0
C.2
D.4
【答案】C
【解析】解:f'(x)=3x2﹣6x=3x(x﹣2), 令f'(x)=0可得x=0或2(2舍去),
当﹣1<x<0时,f'(x)>0,
当0<x<1时,f'(x)<0,
∴当x=0时,f(x)取得最大值为f(0)=2.
故选C
由题意先对函数y进行求导,解出极值点,然后再根据函数的定义域,把极值点和区间端点值代入已知函数,判断函数在区间上的增减性,比较函数值的大小,求出最大值,从而求解.
练习册系列答案
相关题目
【题目】已知随机变量X的概率分布列如表所示:且X的数学期望EX=6,则( )
X | 5 | 6 | 7 | 8 |
p | 0.4 | a | b | 0.1 |
A.a=0.3,b=0.2
B.a=0.2,b=0.3
C.a=0.4,b=0.1
D.a=0.1,b=0.4