题目内容
【题目】设l是直线,α,β是两个不同的平面,则下列说法正确的是( )
A.若l∥α,l∥β,则α∥β
B.若l∥α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l∥β
D.若α⊥β,l∥α,则l⊥β
【答案】B
【解析】解:对于A.若l∥α,l∥β,则α∥β或α,β相交,故A错;
对于B.若l∥α,l⊥β,则由线面平行的性质定理,得过l的平面γ∩α=m,即有m∥l,
m⊥β,再由面面垂直的判定定理,得α⊥β,故B对;
对于C.若α⊥β,l⊥α,则l∥β或lβ,故C错;
对于D.若α⊥β,l∥α,若l平行于α,β的交线,则l∥β,故D错.
故选B.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.
练习册系列答案
相关题目