题目内容

如图所示,在△ABC中,AD⊥BC于D,下列条件:

(1)∠B+∠DAC=90°;
(2)∠B=∠DAC;
(3)
(4)AB2=BD·BC.
其中一定能够判定△ABC是直角三角形的共有
A.3个    B.2个     C.1个    D.0个
A
(1)不能判定△ABC为直角三角形,因为∠B+∠DAC=90°,而∠B+∠DAB=90°,∴∠BAD=∠DAC,∴∠B=∠C,不能判定∠BAD+∠DAC=90°;而(2)中∠B=∠DAC,∠C为公共角,∴△ABC∽△DAC,∵△DAC为直角三角形,∴△ABC为直角三角形;在(3)中,可得△ACD∽△BAD,所以∠BAD=∠C,∠B=∠DAC,∴∠BAD+∠DAC=90°;而(4)中AB2=BD·BC,即,∠B为公共角,∴△ABC∽△DBA,即△ABC为直角三角形.
∴正确命题有3个.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网