题目内容
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:
(1)∠FEB=∠CEB;
(2)EF2=AD·BC.
(1)∠FEB=∠CEB;
(2)EF2=AD·BC.
(1)见解析(2)见解析
(1)由直线CD与⊙O相切,得∠CEB=∠EAB.
由AB为⊙O的直径,得AE⊥EB,从而∠EAB+∠EBF=;
又EF⊥AB,得∠FEB+∠EBF=.
从而∠FEB=∠EAB.故∠FEB=∠CEB.
(2)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边得Rt△BCE≌Rt△BFE,所以BC=BF.
类似可证Rt△ADE≌Rt△AFE,得AD=AF.
又在Rt△AEB中,EF⊥AB,故EF2=AF·BF,
所以EF2=AD·BC.
由AB为⊙O的直径,得AE⊥EB,从而∠EAB+∠EBF=;
又EF⊥AB,得∠FEB+∠EBF=.
从而∠FEB=∠EAB.故∠FEB=∠CEB.
(2)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边得Rt△BCE≌Rt△BFE,所以BC=BF.
类似可证Rt△ADE≌Rt△AFE,得AD=AF.
又在Rt△AEB中,EF⊥AB,故EF2=AF·BF,
所以EF2=AD·BC.
练习册系列答案
相关题目