题目内容
P是双曲线
-
=1的右支上一点,M.N分别是圆(x+10)2+y2=4和(x-10)2+y2=1上的点,则|PM|-|PN|的最大值为______.
x2 |
36 |
y2 |
64 |
双曲线
-
=1中,
∵a=6,b=8,c=10,
∴F1(-10,0),F2(10,0),
∵|PF1|-|PF2|=2a=12,
∴|MP|≤|PF1|+|MF1|,|PN|≥|PF2|+|NF2|,
∴-|PN|≤-|PF2|+|NF2|,
所以,|PM|-|PN|≤|PF1|+|MF1|-|PF2|+|NF2|
=12+1+2
=15.
故答案为:15.
x2 |
36 |
y2 |
64 |
∵a=6,b=8,c=10,
∴F1(-10,0),F2(10,0),
∵|PF1|-|PF2|=2a=12,
∴|MP|≤|PF1|+|MF1|,|PN|≥|PF2|+|NF2|,
∴-|PN|≤-|PF2|+|NF2|,
所以,|PM|-|PN|≤|PF1|+|MF1|-|PF2|+|NF2|
=12+1+2
=15.
故答案为:15.
练习册系列答案
相关题目