题目内容
已知抛物线方程为
,过点![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529125400.png)
作直线与抛物线交于两点
,
,过
分别作抛物线的切线,两切线的交点为
.
(1)求
的值;
(2)求点
的纵坐标;
(3)求△
面积的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529109523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529125400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529140484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529172615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529187646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529203423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529218290.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529234393.png)
(2)求点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529218290.png)
(3)求△
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529265444.png)
(1)-8;(2)-2:(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529281449.png)
试题分析:
解题思路:(1)联立直线与抛物线方程,整理得到关于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529312266.png)
规律总结:直线与抛物线的位置关系,是高考数学的重要题型,其一般思路是联立直线与抛物线的方程,整理得到关于或的一元二次方程,采用“设而不求”的方法进行解答,综合型较强.
试题解析:(1)由已知直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529328397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529359588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529390523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529406682.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529437794.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529468593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529484519.png)
(2)由导数的几何意义知过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529515300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529530407.png)
∴切线方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529546894.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529577743.png)
同理过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529593312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529624727.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529640830.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529655603.png)
将③代入①得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529686434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529218290.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529718304.png)
(3)设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529328397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529359588.png)
由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529468593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529484519.png)
∵点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529218290.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529328397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529858851.png)
线段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529328397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240605298891645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529905751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240605299362383.png)
当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529952404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529265444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060529998450.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目