题目内容
(本小题满分12分)
如图,在四棱锥
中,底面
是矩形,
平面
,
,
,点
为
的中点,
为
中点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001048282394.png)
(1)求证:平面
⊥平面
;
(2)求直线
与平面
所成的角的正弦值;
(3)求点
到平面
的距离.
如图,在四棱锥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104548603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104563526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104579394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104563526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104672566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104688485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104704292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104719374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104797399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104813365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001048282394.png)
(1)求证:平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105047539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105062453.png)
(2)求直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105109383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105047539.png)
(3)求点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104704292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105047539.png)
(1)证明:见解析;(2)
;(3)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001051721320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105203975.png)
试题分析:(I)根据面面垂直的判定定理,证明:PD⊥平面ABM即可.
(II)本小题易建立直角坐标系,然后利用向量法求解,设平面ABM的法向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105218296.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105234981.png)
(III) 设所求距离为h,利用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105250777.png)
(1)证明: 因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104672566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104797399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000104813365.png)
因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD,
所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,
所以平面ABM⊥平面PCD. ------------ 4 分
(向量法也可)
(2)如图所示,建立空间直角坐标系,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105328523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105343568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105374574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105437621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105515578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105530673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001055463263.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105047539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105702652.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105718770.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105733851.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105749298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105764357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105780593.png)
设所求角为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105796310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001051721320.png)
(3)设所求距离为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105827313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105842821.png)
得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000105203975.png)
点评:掌握线线,线面,面面垂直的判定与性质,直线与平面所成的角的定义,点到平面的距离的常见求法是求解此类问题的基础.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目