题目内容
已知函数
其中
为自然对数的底数,
.(Ⅰ)设
,求函数
的最值;(Ⅱ)若对于任意的
,都有
成立,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133659835.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133675264.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133675431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133690582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133706562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133737398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232151337531167.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133768266.png)
(Ⅰ)
,
. (Ⅱ)
的取值范围是![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133846727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133784815.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133815774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133768266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133846727.png)
第一问中,当
时,
,
.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵
,
,
∴原不等式等价于:
,
即
, 亦即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215134002821.png)
分离参数的思想求解参数的范围
解:(Ⅰ)当
时,
,
.
当
在
上变化时,
,
的变化情况如下表:
∴
时,
,
.
(Ⅱ)∵
,
,
∴原不等式等价于:
,
即
, 亦即
.
∴对于任意的
,原不等式恒成立,等价于
对
恒成立,
∵对于任意的
时,
(当且仅当
时取等号).
∴只需
,即
,解之得
或
.
因此,
的取值范围是![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133846727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133862345.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133877643.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133893807.png)
第二问中,∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133909674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133924917.png)
∴原不等式等价于:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232151339551456.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133971945.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215134002821.png)
分离参数的思想求解参数的范围
解:(Ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133862345.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133877643.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133893807.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133768266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215134111317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215134221481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215134236447.png)
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | | - | ![]() | + | |
![]() | ![]() | ![]() | ![]() | ![]() | 1/e |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215134829455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133784815.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133815774.png)
(Ⅱ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133909674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133924917.png)
∴原不等式等价于:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232151349231378.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133971945.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215134002821.png)
∴对于任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215135079399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215134002821.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215135203395.png)
∵对于任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215135079399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215135375791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215135640337.png)
∴只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215135781698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215135812638.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215135827422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215135999368.png)
因此,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133768266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215133846727.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目