题目内容
【题目】(已知函数f(x)= ,则y=f(x)的图象大致为( )
A.
B.
C.
D.
【答案】A
【解析】解:令g(x)=x﹣lnx﹣1,则 ,
由g'(x)>0,得x>1,即函数g(x)在(1,+∞)上单调递增,
由g'(x)<0得0<x<1,即函数g(x)在(0,1)上单调递减,
所以当x=1时,函数g(x)有最小值,g(x)min=g(0)=0,
于是对任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,
因函数g(x)在(0,1)上单调递减,则函数f(x)在(0,1)上递增,故排除C,
故选A.
【考点精析】认真审题,首先需要了解函数的图象(函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值),还要掌握利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减)的相关知识才是答题的关键.
练习册系列答案
相关题目
【题目】某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
x | 2 | 8 | 9 | 11 | 5 |
y | 12 | 8 | 8 | 7 | 10 |
(1)求y关于x的回归方程 ;
(2)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额. (附:回归方程 中, = = , = ﹣ .)