题目内容

【题目】设对于任意实数x,不等式|x+7|+|x﹣1|≥m恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式:|x﹣3|﹣2x≤2m﹣12.

【答案】
(1)解:设f(x)=|x+7|+|x﹣1|,则有f(x)=

当x≤﹣7时,f(x)有最小值8;当﹣7≤x≤1时,f(x)有最小值8;

当x≥1时,f(x)有最小值8.综上f(x)有最小值8,所以,m≤8


(2)解:当m取最大值时m=8,原不等式等价于:|x﹣3|﹣2x≤4,

等价于: ,或

等价于:x≥3或﹣ ≤x≤3,

所以原不等式的解集为{x|x≥﹣ }


【解析】(1)要使不等式|x+7|+|x﹣1|≥m恒成立,需f(x)=|x+7|+|x﹣1|的最小值大于或等于m,问题转化为求f(x)的最小值.(2)当m取最大值8时,原不等式等价于:|x﹣3|﹣2x≤4,去掉绝对值符号,解此不等式.
【考点精析】认真审题,首先需要了解绝对值不等式的解法(含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网