题目内容

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求四面体N﹣BCM的体积.

【答案】
(1)

证明:取BC中点E,连结EN,EM,

∵N为PC的中点,∴NE是△PBC的中位线,

∴NE∥PB,

又∵AD∥BC,∴BE∥AD,

∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,

∴BE= BC=AM=2,

∴四边形ABEM是平行四边形,

∴EM∥AB,∴平面NEM∥平面PAB,

∵MN平面NEM,∴MN∥平面PAB


(2)

解:

取AC中点F,连结NF,

∵NF是△PAC的中位线,

∴NF∥PA,NF= =2,

又∵PA⊥面ABCD,∴NF⊥面ABCD,

如图,延长BC至G,使得CG=AM,连结GM,

∵AM CG,∴四边形AGCM是平行四边形,

∴AC=MG=3,

又∵ME=3,EC=CG=2,

∴△MEG的高h= ,∴SBCM= ,∴四面体N﹣BCM的体积VNBCM= = .


【解析】(1)取BC中点E,连结EN,EM,得NE是△PBC的中位线,推导出四边形ABEM是平行四边形,由此能证明MN∥平面PAB.(2)取AC中点F,连结NF,NF是△PAC的中位线,推导出NF⊥面ABCD,延长BC至G,使得CG=AM,连结GM,则四边形AGCM是平行四边形,由此能求出四面体N﹣BCM的体积.;本题考查线面平行的证明,考查四面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
【考点精析】本题主要考查了直线与平面平行的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网