题目内容

8.若函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函数,则使f(x)>3成立的x的取值范围为(  )
A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞)

分析 由f(x)为奇函数,根据奇函数的定义可求a,代入即可求解不等式.

解答 解:∵f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函数,
∴f(-x)=-f(x)
即$\frac{{2}^{-x}+1}{{2}^{-x}-a}=\frac{{2}^{x}+1}{a-{2}^{x}}$
整理可得,$\frac{1+{2}^{x}}{1-a•{2}^{x}}=\frac{1+{2}^{x}}{a-{2}^{x}}$
∴1-a•2x=a-2x
∴a=1,
∴f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$
∵f(x))=$\frac{{2}^{x}+1}{{2}^{x}-1}$>3
∴$\frac{{2}^{x}+1}{{2}^{x}-1}$-3=$\frac{4-2•{2}^{x}}{{2}^{x}-1}$>0,
整理可得,$\frac{{2}^{x}-2}{{2}^{x}-1}<0$,
∴1<2x<2
解可得,0<x<1
故选:C

点评 本题主要考查了奇函数的定义的应用及分式不等式的求解,属于基础试题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网