题目内容
已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点.
(1)求椭圆的方程:
(2)若点D为椭圆上不同于、的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线与椭圆交于、两点,证明直线与直线的交点在直线上.
,
解:(1)设椭圆方程为
将、、代入椭圆E的方程,得
解得.
∴椭圆的方程
(2),设边上的高为
当点在椭圆的上顶点时,最大为,所以的最大值为.
设的内切圆的半径为,因为的周长为定值6.所以,
所以的最大值为.所以内切圆圆心的坐标为
(3)法一:将直线代入椭圆的方程并整理.
得.
设直线与椭圆的交点,
由根系数的关系,得.
直线的方程为:,它与直线的交点坐标为
同理可求得直线与直线的交点坐标为.
下面证明、两点重合,即证明、两点的纵坐标相等:
,
因此结论成立.
综上可知.直线与直线的交点住直线上.
法二:直线的方程为:
由直线的方程为:,即
由直线与直线的方程消去,得
∴直线与直线的交点在直线上.
将、、代入椭圆E的方程,得
解得.
∴椭圆的方程
(2),设边上的高为
当点在椭圆的上顶点时,最大为,所以的最大值为.
设的内切圆的半径为,因为的周长为定值6.所以,
所以的最大值为.所以内切圆圆心的坐标为
(3)法一:将直线代入椭圆的方程并整理.
得.
设直线与椭圆的交点,
由根系数的关系,得.
直线的方程为:,它与直线的交点坐标为
同理可求得直线与直线的交点坐标为.
下面证明、两点重合,即证明、两点的纵坐标相等:
,
因此结论成立.
综上可知.直线与直线的交点住直线上.
法二:直线的方程为:
由直线的方程为:,即
由直线与直线的方程消去,得
∴直线与直线的交点在直线上.
练习册系列答案
相关题目