题目内容
求证:AD⊥平面SBC
见解析
证明:SA⊥面ABC, BC⊥面ABC,ÞBC ⊥SA;
又BC⊥AC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;
又ADÌ面SAC,∴ BC⊥AD,
又已知SC⊥AD,且BC、SC是面SBC内两相交线,∴ AD⊥面SBC。
又BC⊥AC,且AC、SA是面SAC内的两相交线,∴BC⊥面SAC;
又ADÌ面SAC,∴ BC⊥AD,
又已知SC⊥AD,且BC、SC是面SBC内两相交线,∴ AD⊥面SBC。
练习册系列答案
相关题目