题目内容
【题目】某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.
(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;
(2)求使P(X=m)取得最大值的整数m.
【答案】
(1)解:因为事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立事件,所以 与 相互独立,由于P(A)=P(B)= = ,故P( )=P( )=1﹣ ,
因此学生甲收到活动信息的概率是1﹣(1﹣ )2=
(2)解:当k=n时,m只能取n,此时有P(X=m)=P(X=n)=1
当k<n时,整数m满足k≤m≤t,其中t是2k和n中的较小者,由于“李老师与张老师各自独立、随机地发送活动信息给k位”所包含的基本事件总数为( )2,当X=m时,同时收到两位老师所发信息的学生人数为2k﹣m,仅收到李老师或张老师转发信息的学生人数为m﹣k,由乘法原理知:事件{X=m}所包含的基本事件数为
P(X=m)= =
当k≤m<t时,P(X=M)<P(X=M+1)(m﹣k+1)2≤(n﹣m)(2k﹣m)m≤2k﹣
假如k≤2k﹣ <t成立,则当(k+1)2能被n+2整除时,
k≤2k﹣ <2k+1﹣ <t,故P(X=M)在m=2k﹣ 和m=2k+1﹣ 处达到最大值;
当(k+1)2不能被n+2整除时,P(X=M)在m=2k﹣[ ]处达到最大值(注:[x]表示不超过x的最大整数),
下面证明k≤2k﹣ <t
因为1≤k<n,所以2k﹣ ﹣k= ≥ = ≥0
而2k﹣ ﹣n= <0,故2k﹣ <n,显然2k﹣ <2k
因此k≤2k﹣ <t
综上得,符合条件的m=2k﹣[ ]
【解析】(1)由题设,两位老师发送信息是独立的,要计算该系学生甲收到李老师或张老师所发活动通知信息的概率可先计算其对立事件,该生没有接到任一位老师发送的信息的概率,利用概率的性质求解;(2)由题意,要先研究随机变量X的取值范围,由于k≤n故要分两类k=n与k<n进行研究,k=n时易求,k<n时,要研究出同时接受到两位老师信息的人数,然后再研究事件所包含的基本事件数,表示出P(X=m),再根据其形式研究它取得最大值的整数m即可.
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,
9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
7527 | 0293 | 7140 | 9857 | 0347 | 4373 | 8636 | 6947 | 1417 | 4698 |
0371 | 6233 | 2616 | 8045 | 6011 | 3661 | 9597 | 7424 | 7610 | 4281 |
根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.