题目内容

【题目】某个命题与正整数n有关,如果当 时命题成立,那么可推得当时命题也成立. 现已知当n=8时该命题不成立,那么可推得 ( )

A. 当n=7时该命题不成立 B. 当n=7时该命题成立

C. 当n=9时该命题不成立 D. 当n=9时该命题成立

【答案】A

【解析】分析:本题考查的知识点是数学归纳法,由归纳法的性质,我们由P(n)对n=k成立,则它对n=k+1也成立,由此类推,对n>k的任意整数均成立,结合逆否命题同真同假的原理,当P(n)对n=k不成立时,则它对n=k-1也不成立,由此类推,对n<k的任意正整数均不成立,由此不难得到答案.

详解:由题意可知,原命题成立则逆否命题成立,
P(n)对n=8不成立,P(n)对n=7也不成立,
否则n=7时成立,由已知推得n=8也成立.
与当n=7时该命题不成立矛盾
故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网