题目内容
【题目】已知三棱台ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求证:BC1⊥平面AA1C1C
(2)点D是B1C1的中点,求二面角A1﹣BD﹣B1的余弦值.
【答案】
(1)证明:梯形BB1C1C中,BB1=CC1=B1C1=2,BC=4得: ,从而BC1⊥CC1,
因为平面BB1C1C⊥平面ABC,且AC⊥BC,
所以AC⊥平面BB1C1C,因此BC1⊥AC,
因为AC∩CC1=C,所以BC1⊥平面AA1C1C
(2)解:如图,以CA,CB所在直线分别为x轴,y轴,点C为原点建立空间直角坐标系,则A(6,0,0),B(0,4,0),C(0,0,0),C1(0,1, ),B1(0,3, ),D(0,2, ),A1(3,1, ),
平面BB1D的法向量 =(1,0,0),设平面AB1D的法向量为 =(x,y,z),
则 ,
令z= ,得 ( , ),
所以所求二面角的余弦值是﹣ =﹣ .
【解析】(1)证明BC1⊥CC1 , BC1⊥AC,即可证明BC1⊥平面AA1C1C(2)以CA,CB所在直线分别为x轴,y轴,点C为原点建立空间直角坐标系,求出平面的法向量,即可求二面角A1﹣BD﹣B1的余弦值.
【题目】近几年,京津冀等地数城市指数“爆表”,尤其2015年污染最重.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
车流量x(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的浓度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是,其中, .