题目内容
(2013•浙江)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(Ⅰ)求d,an;
(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.
(Ⅰ)求d,an;
(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.
(1)d=﹣1或d=4;an=﹣n+11或an=4n+6
(2)|a1|+|a2|+|a3|+…+|an|=.
(2)|a1|+|a2|+|a3|+…+|an|=.
(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.
当d=﹣1时,an=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.
当d=4时,an=a1+(n﹣1)d=10+4(n﹣1)=4n+6.
所以an=﹣n+11或an=4n+6;
(Ⅱ)设数列{an}的前n项和为Sn,因为d<0,由(Ⅰ)得d=﹣1,an=﹣n+11.
则当n≤11时,.
当n≥12时,|a1|+|a2|+|a3|+…+|an|=﹣Sn+2S11=.
综上所述,
|a1|+|a2|+|a3|+…+|an|=.
当d=﹣1时,an=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.
当d=4时,an=a1+(n﹣1)d=10+4(n﹣1)=4n+6.
所以an=﹣n+11或an=4n+6;
(Ⅱ)设数列{an}的前n项和为Sn,因为d<0,由(Ⅰ)得d=﹣1,an=﹣n+11.
则当n≤11时,.
当n≥12时,|a1|+|a2|+|a3|+…+|an|=﹣Sn+2S11=.
综上所述,
|a1|+|a2|+|a3|+…+|an|=.
练习册系列答案
相关题目