题目内容
【题目】已知为自然对数的底数, ).
(1)设为的导函数,证明:当时, 的最小值小于0;
(2)若恒成立,求符合条件的最小整数
【答案】(1)见解析;(2).
【解析】试题分析:(1)先对函数进行求导,然后再对导函数进行求导,判断导函数的单调性与单调区间,利用单调性确定到导函数的最小值;(2)先根据条件,确定问题即求函数的最小值大于0,然后对函数进行求导,利用函数的单调性及零点存在定理确定函数存在零点,并表示零点,然后通过不等式恒成立,确定关于的关系式,再对该关系式进行求导,利用导数判断单调性,求得的取值范围,最后得到其取到的最小整数.
试题解析:(1)令,则
因为,令,则.
所以当时, 单调递减;
当时, 单调递增.
则= = ==
令,
当时, 单调递增;
当时, 单调递减.
所以,所以成立.
(2) 恒成立,等价于恒成立.
令,
则因为,所以,所以单调递增.
又,
所以存在,使得.
则时, 单调递减;
时, 单调递增.
所以恒成立. ①
且②
由①②得==恒成立.
又由②得,
所以
,
所以,
所以单调递增, =,
=,
所以,所以符合条件的最小整数.
练习册系列答案
相关题目