题目内容
【题目】已知函数 ,且 .
(Ⅰ)设 ,求的单调区间及极值;
(Ⅱ)证明:函数的图象在函数的图象的上方.
【答案】(Ⅰ) 当时, .(Ⅱ)详见解析
【解析】试题分析:(Ⅰ)由题意可得,则= ,求导即可研究单调区间及极值;
(Ⅱ)证明:函数的图象在函数的图象的上方,等价于,即,只要证得,可通过证明即可.
试题解析:
(Ⅰ)解:由,所以,解得,
又得,所以,
于是,则,由,
所以的递增区间,递减区间,
当时,.
(Ⅱ)证明:“函数的图象在函数的图象的上方”等价于“”,即要证:,又,
所以只要证.
由(Ⅰ)得,即(当且仅当时等号成立),
所以只要证明当时,即可.
设,
所以,令,解得,
由得,所以在上为增函数,
所以,即,
所以,故函数的图象在函数的图象的上方.
【题目】2017年4月1日,新华通讯社发布:国务院决定设立河北雄安新区.消息一出,河北省雄县、容城、安新3县及周边部分区域迅速成为海内外高度关注的焦点.
(1)为了响应国家号召,北京市某高校立即在所属的8个学院的教职员工中作了“是否愿意将学校整体搬迁至雄安新区”的问卷调查,8个学院的调查人数及统计数据如下:
调查人数() | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
愿意整体搬迁人数() | 8 | 17 | 25 | 31 | 39 | 47 | 55 | 66 |
请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归方程保留小数点后两位有效数字);若该校共有教职员工2500人,请预测该校愿意将学校整体搬迁至雄安新区的人数;
(2)若该校的8位院长中有5位院长愿意将学校整体搬迁至雄安新区,现该校拟在这8位院长中随机选取4位院长组成考察团赴雄安新区进行实地考察,记为考察团中愿意将学校整体搬迁至雄安新区的院长人数,求的分布列及数学期望.
参考公式及数据: .
【题目】某学校高三年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.
(Ⅰ)完成下面的列联表;
不喜欢运动 | 喜欢运动 | 合计 | |
女生 | 50 | ||
男生 | |||
合计 | 100 | 200 |
(Ⅱ)在抽取的样本中,调查喜欢运动女生的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段和的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.