题目内容
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.
【答案】
(1)解:∵(c﹣2a) =c ,即(c﹣2a)accos(π﹣B)=abccosC,
∴2accosB=bcosC+ccosB,∴2sinAcosB=sinBcosC+sinCcosB,
∴2sinAcosB=sin(B+C)=sinA,
∴cosB= ,∴B=
(2)解:f(x)=cosx(asinx﹣2cosx)+1= sin2x﹣cos2x= sin(2x﹣φ),
∵对任意的x∈R,都有f(x)≤f(B)=f( ),
∴sin( ﹣φ)=1,∴φ= ,
∴f(x)= sin(2x﹣ ),
令 ,解得 ≤x≤ +kπ,k∈Z.
∴函数f(x)的单调递减区间是[ , +kπ],k∈Z.
【解析】(1)根据向量的数量积定义和三角恒等变换化简即可求出cosB,得出B的值;(2)化简f(x)的解析式,根据f(B)为f(x)的最大值求出f(x)的解析式,利用正弦函数的单调区间列不等式解出.
练习册系列答案
相关题目