题目内容

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

【答案】
(1)解:∵(c﹣2a) =c ,即(c﹣2a)accos(π﹣B)=abccosC,

∴2accosB=bcosC+ccosB,∴2sinAcosB=sinBcosC+sinCcosB,

∴2sinAcosB=sin(B+C)=sinA,

∴cosB= ,∴B=


(2)解:f(x)=cosx(asinx﹣2cosx)+1= sin2x﹣cos2x= sin(2x﹣φ),

∵对任意的x∈R,都有f(x)≤f(B)=f( ),

∴sin( ﹣φ)=1,∴φ=

∴f(x)= sin(2x﹣ ),

,解得 ≤x≤ +kπ,k∈Z.

∴函数f(x)的单调递减区间是[ +kπ],k∈Z.


【解析】(1)根据向量的数量积定义和三角恒等变换化简即可求出cosB,得出B的值;(2)化简f(x)的解析式,根据f(B)为f(x)的最大值求出f(x)的解析式,利用正弦函数的单调区间列不等式解出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网